

# HYMU 80<sup>®</sup>

## Type analysis

Single figures are nominal except where noted.

| Nickel  | 80.00 % | Iron   | Balance | Molybdenum | 4.20 % |
|---------|---------|--------|---------|------------|--------|
| Silicon | 0.35 %  | Carbon | 0.02 %  |            |        |

#### Forms manufactured

| Bar-Rounds Billet Sheet Strip Wire |  |
|------------------------------------|--|
|------------------------------------|--|

## Description

HyMu 80 is an unoriented, 80% nickel-iron-molybdenum alloy which offers extremely high initial permeability as well as maximum permeability with minimum hysteresis loss.

HyMu 80 has been used primarily in transformer cores, tape wound toroids and laminations where compactness and weight factors are important. It has also been used for shielding to protect electrical components from stray magnetic fields.

This alloy is moderately resistant to moisture and atmospheric corrosion.

#### **Key Properties:**

- Extremely high initial permeability
- Maximum permeability
- Minimum hysteresis loss

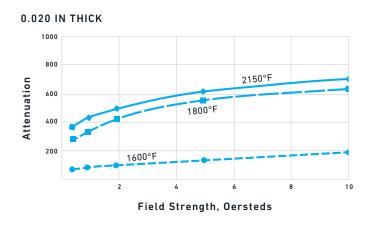
#### Markets:

- Aerospace
- Consumer
- Automotive
- Industrial
- Commercial

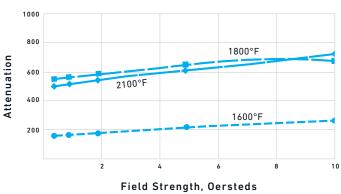
## **Applications:**

- Transformer cores
- Laminations
- Tape wound toroids
- Shielding




## Physical properties

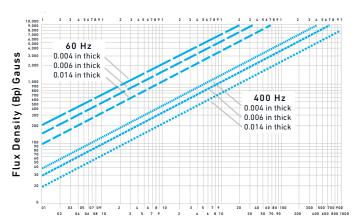
| PROPERTY                                  | At or From                 | English Units                                          | Metric Units                            |
|-------------------------------------------|----------------------------|--------------------------------------------------------|-----------------------------------------|
| SPECIFIC GRAVITY                          | -                          | 8.74                                                   | 8747 kg/m³                              |
| DENSITY                                   | _                          | 0.3160 lb/°F                                           |                                         |
| MEAN SPECIFIC HEAT                        | _                          | 0.1180 Btu/lb/°F                                       | 494 J/kg·K                              |
|                                           | -103 to 77°F (-75 to 25°C) | $6.00 \times 10^{-6}$ length/length/°F                 | $10.8 \times 10^{-6}$ length/length/°C  |
|                                           | -58 to 77°F (-50 to 25°C)  | 5.94 x 10 <sup>-6</sup> length/length/°F               | $10.7 \times 10^{-6}$ length/length/°C  |
|                                           | -11 to 77°F (-25 to 25°C)  | $5.78 \times 10^{-6}$ length/length/°F                 | $10.4 \times 10^{-6}$ length/length/°C  |
| MEAN COEFFICIENT OF THERMAL EXPANSION     | 77 to 122°F (25 to 50°C)   | $6.83 \times 10^{-6}$ length/length/°F                 | $12.30 \times 10^{-6}$ length/length/°C |
| MEAN CUEFFICIENT OF THERMAL EXPANSION     | 77 to 212°F (25 to 100°C)  | $6.89 \times 10^{-6}$ length/length/°F                 | $12.40 \times 10^{-6}$ length/length/°C |
|                                           | 77 to 392°F (25 to 200°C)  | $7.09 \times 10^{-6}$ length/length/°F                 | $12.76 \times 10^{-6}$ length/length/°C |
|                                           | 77 to 572°F (25 to 300°C)  | $7.22 \times 10^{-6}$ length/length/°F                 | $13.00 \times 10^{-6}$ length/length/°C |
|                                           | 77 to 752°F (25 to 400°C)  | $7.39 \times 10^{-6} length/length/°F$                 | $13.30 \times 10^{-6} length/length/°C$ |
| THERMAL CONDUCTIVITY                      | _                          | 240.1 Btu-in/hr/ft <sup>2</sup> /°F                    | 34.6 W/m·K                              |
| ELASTIC MODULUS                           | _                          |                                                        |                                         |
| AFTER PROCESS ANNEAL AT 871°C, IN TENSION | _                          | $31.4 \times 10^3$ ksi                                 |                                         |
| COLD DRAWN, IN TENSION                    | _                          | $33.7 \times 10^3 \text{ ksi}$                         |                                         |
| HYDROGEN ANNEALED AT 1177°C, IN TENSION   | _                          | $33.3 \times 10^3 \text{ ksi}$                         |                                         |
| ELECTRICAL RESISTIVITY                    | 70°F (21°C)                | 349.0 ohm-cir-mil/ft                                   | 58 microohm·cm                          |
| TEMPERATURE COEFF OF ELECTRICAL RESIST    | 0 to 930°F (-18 to 499°C)  | $6.00 \times 10^{-4} \text{ ohm/ohm/}^{\circ}\text{F}$ |                                         |
| CURIE TEMPERATURE                         | _                          | 734°F                                                  | 390°C                                   |
| MELTING RANGE                             | _                          | 2650°F                                                 | 1454.4°C                                |


## Magnetic properties

## ATTENUATION VS. HELMHOLTZ COIL FIELD

60~Hz fields, Shield 6~in (152 mm) long x 2.75 in (69.9 mm) OD. .5 in (12.7 mm) overlap spot weld




## 0.031 IN THICK





#### **CORE LOSS**

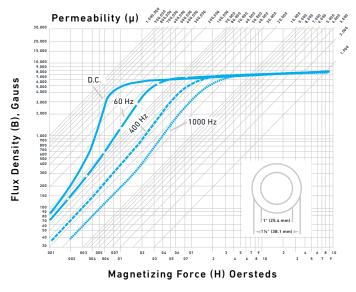
60 Hz and 400 Hz, sine current excitation. Toroid specimen 0.004 in (0.102 mm), ring laminations 0.006 in (0.152 mm) and 0.014 in (0.356 mm) thick, dry hydrogen annealed at 2150°F (1177°C), 4 hrs, cooled at 600°F (334°C) per hour



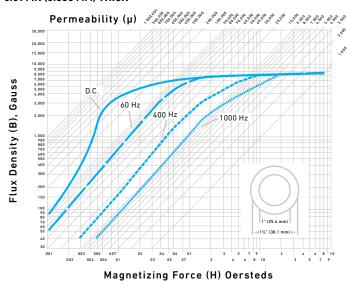
Core Loss, Wc/lb, Milliwatts per Pound

| DC MAGNETIC PROPERTIES |               |         |                       |  |  |  |  |
|------------------------|---------------|---------|-----------------------|--|--|--|--|
| FORM                   | μ AT B = 40 G | μ ΜΑΧ   | Hc FROM H = 1 Oersted |  |  |  |  |
| Bar, Wire              | 50,000        | 200,000 | 0.02 max.             |  |  |  |  |

| TYPICAL A          | TYPICAL AC MAGNETIC PROPERTIES 60 Hz |        |         |          |  |  |  |  |  |  |
|--------------------|--------------------------------------|--------|---------|----------|--|--|--|--|--|--|
| THICKNESS          |                                      | / 0.0  | 200 C   | 2000 C   |  |  |  |  |  |  |
| IN                 | мм                                   | μ 40 G | μ 200 G | μ 2000 G |  |  |  |  |  |  |
| 0.025 <sup>1</sup> | 0.635                                | 35,000 | 40,000  | 55,000   |  |  |  |  |  |  |
| 0.0141             | 0.356                                | 55,000 | 65,000  | 95,000   |  |  |  |  |  |  |
| 0.0061             | 0.152                                | 65,000 | 85,000  | 135,000  |  |  |  |  |  |  |
| 0.0022             | 0.051                                | 70,000 | 90,000  | 220,000  |  |  |  |  |  |  |


 $<sup>^{1}</sup>$  Ring laminations 1.5 in (38.1 mm) OD x 1 in (25.4 mm) ID specimens

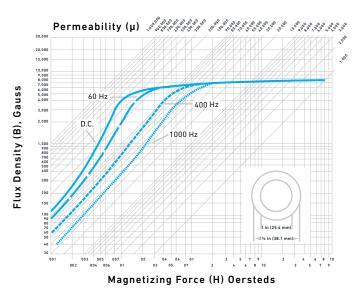
<sup>&</sup>lt;sup>2</sup> Tape toroid specimen




#### **RING LAMINATION RESULTS**

#### 0.006 IN (0.152 MM) THICK




#### 0.014 IN (0.356 MM) THICK



#### **TYPICAL MAGNETIZATION CURVES**

DC and 60, 400 and 1000 Hz, sine current excitation. Dry hydrogen annealed at 2150°F (1177°C), 4 hours, cooled at 600°F (334°C) per hour

#### TOROID SPECIMEN RESULTS 0.5 IN WIDE X 0.004 IN (12.7 MM X 0.102 MM) THICK





## Magnetic properties

| COERCIVITY (Hc)             |  |
|-----------------------------|--|
| MAXIMUM PERMEABILITY (μΜΑΧ) |  |
| RESIDUAL INDUCTION (Br)     |  |
| HYSTERESIS LOSS             |  |

0 00800 to 0.02 0e 200000

3500 G

1.  $80E^{-6}$  to  $2.40E^{-6}$  J/cm $^3$ /cycle

## Shielding properties

| Shielding            | Because of its very high permeability and very low coercive force, HyMu 80 is particularly well suited for magnetic shielding applications                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Annealing            | Annealed, deep draw quality strip can be fabricated into shields by bending, drawing and spinning Where joining is required, spot welding or tungsten inert-gas welding can be used, with or without a base metal filler rod                                                                                                                                                                                                           |
| Best characteristics | To develop the best shielding characteristics, shields must be annealed at 1900°F (1040°C) or higher (as described in the heat treatment section) after all fabricating operations have been completed n general, higher annealing temperatures yield higher permeability and better shielding characteristics                                                                                                                         |
| Relative capability  | To determine its relative shielding capability, a material is evaluated as an open-ended cylindrical shield n a uniform magnetic field, such as that produced by a Helmholtz coil When a pickup unit is centered in the field of the coil, the attenuation (A) is the ratio of the reading with no shield (E1) to that obtained when a shield is positioned over the pickup (E2), with its axis perpendicular to the field (A = E1/E2) |
| Effectiveness        | This is a measure of the shielding effectiveness under the particular test conditions, and for a given material depends upon the shield thickness, its length-to-diameter ratio and the diameter of the Helmholtz coil The detailed procedure is described in ASTM Standard A698, section "Alternating Current Methods of Test for Magnetic Shielding"                                                                                 |



## Typical mechanical properties

| BAR                                    |                |                   |     |                              |     |          |                            |                      |          |  |
|----------------------------------------|----------------|-------------------|-----|------------------------------|-----|----------|----------------------------|----------------------|----------|--|
| HEAT<br>TREATMENT                      | YIELD<br>STREN | YIELD<br>Strength |     | ULTIMATE TENSILE<br>STRENGTH |     | ORTIONAL | ELONGATION<br>2 IN (50 MM) | REDUCTION<br>OF AREA | HARDNESS |  |
|                                        | ksi            | MPa               | ksi | MPa                          | ksi | MPa      | %                          | %                    | HRB      |  |
| Cold drawn                             | 69             | 414               | 97  | 669                          | 19  | 131      | 37                         | 71                   | 97       |  |
| Hydrogen annealed<br>2050°F (1121°C)   | 22             | 152               | 79  | 545                          | 19  | 131      | 64                         | 70                   | 62       |  |
| After process anneal<br>1600°F (871°C) | 33             | 228               | 90  | 620                          | 28  | 193      | 57                         | 70                   | 85       |  |

| ELASTICITY AND IMPACT                 |                 |                |             |     |  |  |  |  |  |
|---------------------------------------|-----------------|----------------|-------------|-----|--|--|--|--|--|
| HEAT<br>TREATMENT                     | ELASTIC MODULUS | S (IN TENSION) | IZOD IMPACT |     |  |  |  |  |  |
|                                       | 10³ ksi         | 10³ MPa        | FT-LB       | J   |  |  |  |  |  |
| Cold drawn                            | 33.7            | 232            | 120         | 163 |  |  |  |  |  |
| Hydrogen annealed<br>2050°F (1121°C)  | 33.3            | 230            | 85          | 115 |  |  |  |  |  |
| After process annealed 1600°F (871°C) | 31.4            | 217            | 85          | 115 |  |  |  |  |  |

| STRIP                                  |                   |     |                              |     |                       |     |            |          |
|----------------------------------------|-------------------|-----|------------------------------|-----|-----------------------|-----|------------|----------|
| HEAT<br>TREATMENT                      | YIELD<br>Strength |     | ULTIMATE TENSILE<br>STRENGTH |     | PROPORTIONAL<br>Limit |     | ELONGATION | HARDNESS |
|                                        | ksi               | MPa | ksi                          | MPa | ksi                   | MPa | %          | HRB      |
| Cold rolled                            | _                 | _   | 135                          | 931 | _                     | _   | 4          | 100      |
| Hydrogen annealed<br>2050°F (1121°C)   | 21                | 145 | 77                           | 531 | 15                    | 103 | 38         | 58       |
| After process anneal<br>1600°F (871°C) | 38                | 262 | 98                           | 676 | 35                    | 241 | 38         | 85       |



#### Heat treatment

#### Annealing

#### In-process anneal:

To relieve all strains and restore the alloy to a soft condition suitable for drawing, spinning, forming, bending or similar operations, anneal at 1450/1850°F (788/1010°C) for not more than 1 hour. Since the high nickel, high permeability alloys readily absorb carbon, sulfur, oxygen and other contaminants from combustion furnace gasses, in-process annealing should be conducted in dissociated ammonia, hydrogen, vacuum or inert gas atmospheres.

## Hydrogen annealing

For maximum softness and optimum magnetic and electrical properties, HyMu 80 should be annealed in an oxygenfree, dry hydrogen atmosphere with a dew point below  $-40^{\circ}\text{F}$  ( $-40^{\circ}\text{C}$ ) at  $2050/2150^{\circ}\text{F}$  ( $1121/1177^{\circ}\text{C}$ ) for 2 to 4 hours. Furnace cool to  $1100^{\circ}\text{F}$  ( $593^{\circ}\text{C}$ ). From 1100 to  $700^{\circ}\text{F}$  (593 to  $371^{\circ}\text{C}$ ), cool at a rate between 350 to  $600^{\circ}\text{F}$  (194 to  $334^{\circ}\text{C}$ ) per hour.

Oil, grease, lacquer and all other contaminants must be removed before annealing. The individual parts should be separated by an inert insulating powder such as magnesium and aluminum oxide during hydrogen annealing.

Vacuum heat treating can be employed. Generally, there is some small sacrifice in magnetic properties compared to heat treating in a dry hydrogen atmosphere.

## Workability

#### **Cold working**

For best blanking characteristics, HyMu 80 strip should be ordered in the cold rolled condition (Rockwell B 90 minimum). For best forming characteristics, strip should be ordered in the cold rolled and annealed condition. For best drawing characteristics, strip orders should be endorsed "annealed, deep draw quality".

#### Machinability

Machines somewhat like the austenitic stainless alloys but does not work harden as rapidly Gummy chips develop in most machining operations. Work-hardened bars (Rockwell B 90 minimum) offer the best machining characteristics.

Lard oil should be used for drilling and machining operations which must be done at slow speeds f sulfur-bearing and water-soluble cutting compounds are used, the parts should be thoroughly cleaned within 48 hours, then heat treated. High-speed steel or carbide tools are suggested for cutting operations.

Following are typical feeds and speeds for HyMu 80 using the high-speed tool materials indicated. When using carbide tools, double the s/fm shown in the chart.



## Typical feeds and speeds

 $\label{thm:conservative} The \ speeds \ and \ feeds \ in \ the \ following \ charts \ are \ conservative \ recommendations \ for \ initial \ setup.$ 

 $\label{thm:ligher_speeds} \mbox{ Higher speeds and feeds may be attainableness depending on machining environment.}$ 

| TURNING — SINGLE-POINT AND BOX TOOLS |                   |       |            |              |               |      |          |  |  |
|--------------------------------------|-------------------|-------|------------|--------------|---------------|------|----------|--|--|
| DEPTH<br>OF CUT. IN                  | HIGH-SPEED        | T00LS |            | CARBIDE TOOL | CARBIDE TOOLS |      |          |  |  |
|                                      | SPEED, FEED, TOOL |       | SPEED, FPM | SPEED, FPM   |               | TOOL |          |  |  |
| 0. 001,                              | FPM               | IPR   | MATERIAL   | UNCOATED     | COATED        | IPR  | MATERIAL |  |  |
| .150                                 | 30                | .010  | M-41       | 120          | _             | .010 | C-2      |  |  |
| .025                                 | 40                | .005  | M-42, M-47 | 130          | _             | .005 | C-3      |  |  |

| TURNING — CUT-OFF AND FORM TOOLS |           |                        |       |       |                     |       |       |              |                |  |
|----------------------------------|-----------|------------------------|-------|-------|---------------------|-------|-------|--------------|----------------|--|
|                                  | FEED, IPR |                        |       |       |                     |       |       | TOOL MATERIA | <b>L</b>       |  |
| SPEED, FPM                       | CUT-OFF   | CUT-OFF TOOL WIDTH, IN |       |       | FORM TOOL WIDTH, IN |       |       | HIGH-SPEED   | CARRIER TOOL C |  |
|                                  | 1/16      | 1/8                    | 1/4   | 1/2   | 1                   | 1-1/2 | 2     | TOOLS        | CARBIDE TOOLS  |  |
| 25                               | .001      | .001                   | .0015 | .0015 | .001                | .0007 | .0007 | M-42         | _              |  |
| 80                               | .003      | .003                   | .0045 | .003  | .002                | .002  | .002  | _            | C-2            |  |

| ROUGH REAMING |               |               |               |                                |      |      |      |       |      |  |  |  |
|---------------|---------------|---------------|---------------|--------------------------------|------|------|------|-------|------|--|--|--|
| HIGH-SPEED    |               | CARBIDE TOOLS |               | FEED, IPR, REAMER DIAMETER, IN |      |      |      |       |      |  |  |  |
| SPEED, FPM    | TOOL MATERIAL | SPEED, FPM    | TOOL MATERIAL | 1/8                            | 1/4  | 1/2  | 1    | 1-1/2 | 2    |  |  |  |
| 30-60         | M-48          | 70            | C-2           | .002                           | .006 | .008 | .010 | .012  | .014 |  |  |  |

| DRILLING   |           |      |                  |      |      |      |       |      |         |
|------------|-----------|------|------------------|------|------|------|-------|------|---------|
|            | FEED, IPR |      |                  |      |      |      |       |      |         |
| SPEED, FPM | NOMINAL   |      | TOOL<br>MATERIAL |      |      |      |       |      |         |
|            | 1/16      | 1/8  | 1/4              | 1/2  | 3/4  | 1    | 1-1/2 | 2    | MAILMAL |
| 40         | .001      | .002 | .004             | .007 | .008 | .010 | .012  | .015 | M-42    |

| TAPPING    |                |
|------------|----------------|
| SPEED, FPM | TOOL MATERIAL  |
| 6–15       | M-1; M-7; M-10 |

| BROACHING — HIGH-SPEED TOOLS |                         |               |  |  |  |  |  |  |
|------------------------------|-------------------------|---------------|--|--|--|--|--|--|
| SPEED, FPM                   | CHIP LOAD, IN PER TOOTH | TOOL MATERIAL |  |  |  |  |  |  |
| 8–12                         | .002                    | M-42          |  |  |  |  |  |  |



| DIE THREADING   |              |               |                |                     |  |  |  |  |  |  |
|-----------------|--------------|---------------|----------------|---------------------|--|--|--|--|--|--|
| FPM FOR HIGH SP | EED TOOLS    |               |                | TOOL MATERIAL       |  |  |  |  |  |  |
| 7 OR LESS, TPI  | 8 TO 15, TPI | 16 TO 24, TPI | 25 AND UP, TPI | TOOL MATERIAL       |  |  |  |  |  |  |
| 8–20            | 10-25        | 15–30         | 20-35          | M-1, M-2, M-7, M-10 |  |  |  |  |  |  |

| MILLING — END PERIPHERAL |               |                     |      |      |      |                  |  |               |                                            |               |      |      |                  |  |  |
|--------------------------|---------------|---------------------|------|------|------|------------------|--|---------------|--------------------------------------------|---------------|------|------|------------------|--|--|
| DEPTH<br>OF CUT, IN      | HIGH-SPE      | HIGH-SPEED TOOLS    |      |      |      |                  |  |               |                                            | CARBIDE TOOLS |      |      |                  |  |  |
|                          |               | FEED, IN PER TOOTH  |      |      |      | TOOL<br>MATERIAL |  | SPEED,<br>FPM | D, FEED, IN PER TOOTH  CUTTER DIAMETER, IN |               |      |      | TOOL<br>MATERIAL |  |  |
|                          | SPEED,<br>FPM | CUTTER DIAMETER, IN |      |      |      |                  |  |               |                                            |               |      |      |                  |  |  |
|                          | 11.4          | 1/4                 | 1/2  | 3/4  | 1-2  | PIGIENIAL        |  | 11111         | 1/4                                        | 1/2           | 3/4  | 1-2  | MAILKIAL         |  |  |
| .050                     | 35            | .0005               | .001 | .002 | .003 | M-42             |  | 200           | .001                                       | .002          | .003 | .004 | C-6              |  |  |

## Other information

| Additional<br>machinability notes | When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions Feeds can be increased between 50 and 100%.  Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of the speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds and feeds should be increased or decreased in small steps. |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weldability                       | Readily welded by following the usual practices for ferrous alloys.  If a filler metal is required, use the same analysis Finish annealed parts can be soft or hard soldered.  Do not braze or solder prior to final heat treatment.                                                                                                                                                                                                                                                         |
| Applicable specifications         | Meets military specification M L-N-14411 B (MR) (8/19/66) and ASTM A-753-78 standard specification. ASTM A753 MIL-N-14411B (MR) (8/19/66)                                                                                                                                                                                                                                                                                                                                                    |



# For additional information, please contact your nearest sales office:

electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC, a subsidiary of Carpenter Technology Corporation.

Carpenter HyMu "80"® is a registered trademark of Carpenter Technology Corporation