

430F STAINLESS

UNS Number: S43020

Type analysis

Single figures are nominal except where noted

Iron	Balance	Chromium	16.00 to 18.00 %	Manganese (Maximum)	1.25 %
Silicon (Maximum)	1.00 %	Molybdenum (Maximum)	0.60 %	Sulfur (Minimum)	0.150 %
Carbon (Maximum)	0.120 %	Phosphorus (Maximum)	0.060 %		

Forms manufactured

Description

430F Stainless should be considered when making machined articles from a 17% chrome steel. Type 430F does not harden by heat treatement. It has been used in automatic screw machines for parts requiring good corrosion resistance, such as aircraft parts, gears, etc. 430F is not recommended for vessels containing gases or liquids under high pressure.

The safe scaling temperature for continuous service is 1500°F (816°C). The low coefficient of expansion of 430F Stainless makes it useful for moderately high temperature applications.

Key Properties:

- Corrosion resistance
- · Low coefficient of expansion
- Does not harden by heat treatment

Markets:

- Aerospace
- Industrial
- Automotive

Applications:

- Aircraft parts
- Gears

Corrosion resistance

430F Stainless resists corrosion from the atmosphere, fresh water and steam, foodstuffs, dairy products, nitric acid, and many petroleum products and organic materials. Its resistance to chloride-stress-corrosion crackling at eleated temperatures is superior to that of austenitic Types 304 and 316.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

IMPORTANT NOTE:

The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Restricted
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Moderate
Sea Water	Restricted	Humidity	Excellent

Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	-	7.70	7.70
DENSITY	_	0.2780 lb/in³	7695kg/m^3
MEAN SPECIFIC HEAT	32 to 212°F (0 to 100°C)	0.1100 Btu/lb/°F	460.5 J/kg·K
MEAN COEFFICIENT OF THERMAL EXPANSION	32 to 1200°F (0 to 649°C)	6.6 x 10 ⁻⁶ length/length/°F	$11.88 \times 10^{-6} length/length/°C$
ELASTIC MODULUS	_	29.0 x 10 ³ ksi	-
ELECTRICAL RESISTIVITY	70°F (21°C)	361.0 ohm-cir-mil/ft	60 microohm·cm

Typical mechanical properties

TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES

1 IN (25.4 MM) ROUND BAR									
HEAT TREATMENT	0.2% YIELD Strength		ULTIMATE TENSILE STRENGTH		ELONGATION IN 2 IN (50.8 MM)	REDUCTION OF AREA	HARDNESS		
TREATMENT	ksi	MPa	ksi	MPa	%	%	BRINELL		
Cold-drawn finish	65	448	90	621	15	55	190		

Heat treatment

Annealing	Heat uniformly to 1250/1400°F (677/760°C), then cool in air. Brinell hardness will be approximately 170.
Hardening	Does not respond to hardening by heat treatment — hardness moderately increased by cold working.

Workability	
Forging	Should be heated uniformly to 1500/1600°F (816/871°C), then taken to the forging temperature of 1950/2100°F (1066/1149°C) as rapidly as possible. Do not soak at the forging temperature, as this may result in excessive grain growth. Hot working operations should not be continued when the temperature has dropped below 1500°F (816°C). Forgings should be air cooled and then annealed.
Cold working	This alloy will withstand moderate cold work but is not recommended for cold upsetting. The primary application for this material is in magnetic components that are machined to shape.
Machinability	Cuts very freely in automatic screw machines. In turning operations, it machines like SAE 1030, 1120 or X1340.

Typical feeds and speeds

TURNING — SINGLE-POINT AND BOX TOOLS									
DEPTH OF CUT. IN	MICRO-MELT	POWDER HIGH-	SPEED TOOLS	CARBIDE TOOL	CARBIDE TOOLS (INSERTS)				
	SPEED,	ED, FEED, TOOL		SPEED, FPM		FEED,	TOOL		
51 55 I, III	FPM	IPR	MATERIAL	UNCOATED	COATED	IPR	MATERIAL		
.150	198	.015	M-48, T-15	600	735	.015	C-6		
.025	222	.007	M-48, T-15	675	835	.007	C-7		

TURNING — CUT-OFF AND FORM TOOLS									
	FEED, IPI	R	TOOL MATERIA	TOOL MATERIAL					
SPEED, FPM	CUT-OFF	CUT-OFF AND FORM TOOLS WIDTH, IN							CARBIDE
	1/16	1/8	1/4	1/2	1	1-1/2	2	POWDER HS	TOOLS
180	.0015	.002	.0025	.0025	.002	.0015	.001	M-48, T-15	_
480	.004	.0055	.007	.005	.004	.0035	.0035	_	C-6

ROUGH REAMING									
MICRO-MELT P	OWDER HS	CARBIDE TOOLS		FEED, IPR, REAMER DIAMETER, IN					
SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2
156	M-48, T-15	150	C-2	.005	.008	.013	.018	.022	.025

DRILLING1 — HIGH SPEED TOOLS										
	FEED, IPI	TOOL								
SPEED, FPM	NOMINAI	NOMINAL HOLE DIAMETER, IN								
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MATERIAL	
100	.001	.003	.006	.010	.014	.017	.021	.025	M-42	
150-200	.002	.004	.008	.012	.018	_	_	_	C-6 uncoated	
200-250	.002	.004	.008	.012	.018	_	_	_	C-6 coated	

Drill should be 130-140 degree included angle and use a split point.

DIE THREADING — HIGH-SPEED TOOLS							
SPEED, FPM				TOOL MATERIAL			
7 OR LESS, TPI	8 TO 15, TPI	16 TO 24, TPI	25 AND UP, TPI	TOOL MATERIAL			
15–25	30-40	40-50	50-60	M-1, M-2, M-7, M-10			

MILLING — END PERIPHERAL												
DEPTH OF CUT, IN	MICRO-ME		CARBIDE TOOLS									
	SPEED, FPM	FEED, IPT CUTTER DIAMETER, IN				TOOL MATERIAL	SPEED, FPM	FEED, IPT				TOOL MATERIAL
								CUTTER DIAMETER, IN				
		1/4	1/2	3/4	1-2	MALENIAL	1 F M	1/4	1/2	3/4	1-2	MAILMAL
.050	168	.001	.002	.004	.005	M-48, T-15	400	.001	.002	.005	.007	C-6

TAPPING — HIGH-SPEED TOOLS						
SPEED, FPM	TOOL MATERIAL					
20-45	M-1, M-7, M-10					

BROACHING — MICRO-MELT POWDER HIGH-SPEED TOOLS						
SPEED, FPM	CHIP LOAD, IPT	TOOL MATERIAL				
36	.0040	M-48, T-15				

Additional machinability notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

When using carbide tools, surface speed ft/min (SFPM) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Weldability

430F Stainless is usually not recommended for welding. The high sulfur content may cause hot cracking and, when welded to a stainless steel with a lower sulfur content, may cause the weld to shift off center. If the alloy must be welded, the use of a filler metal, along with minimum heat inputs and minimum base metal dilution, will improve the chances of success.

AWS E/ER430 welding consumables should be considered. However, the weldments should be post-weld annealed to restore the ductility in the weld metal and heat-affected zones.

The use of austenitic weld metals like E/ER309 should provide welds of good ductility. However, in this case, the heat-affected zone may have limited ductility unless the weldment is given a post-weld anneal.

Other information

Applicable specifications

ASTM A314, ASTM A473, ASTM A581, ASTM A582, ASTM A838

For additional information, please contact your nearest sales office:

electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.