

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Silicon	4.00 %
Manganese	0.15 %	Carbon	0.03 %

Forms manufactured

Bar-Rounds Billet

Description

Silicon Core Iron C is melted in electric arc furnaces to exacting chemical specifications, and carefully controlled in rolling and annealing practices to produce a fine-grained uniform quality magnetic core iron.

This material possesses low residual magnetism in DC circuits and the effect of magnetic aging is negligible.

Key Properties:

- Maximum resistivity
- Maximum initial permeability
- Minimum hysteresis loss in AC and DC circuits

Markets:

- Aerospace
- Consumer
- Automotive
- Industrial

Applications:

- Solenoid switches
- Cores

Relays

- · Pole pieces
- Armatures

Physical properties

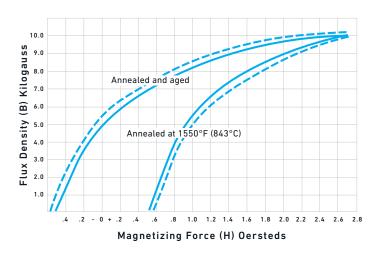
PROPERTY
SPECIFIC GRAVITY
DENSITY
MEAN COEFFICIENT OF THERMAL EXPANSION CONDITION: ANNEALED AT 1385°F (750°C)
ELECTRICAL RESISTIVITY
CURIE TEMPERATURE

At or From
_
_
77 to 212°F (25 to 44.5°C)
77 to 392°F (25 to 200°C)
77 to 572°F (25 to 300°C)
77 to 752°F (25 to 300°C)
77 to 752°F (25 to 400°C)
77 to 932°F (25 to 500°C)
77 to 1112°F (25 to 600°C)
77 to 1292°F (25 to 700°C)
70°F (21°C)
_

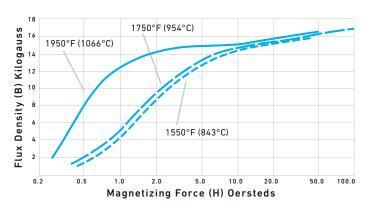
Metric Units
7.60
$7584 kg/m^3$
$11.79 \times 10^{-6} length/length/°C$
12.35×10^{-6} length/length/°C
$13.16 \times 10^{-6} length/length/°C$
$13.16 \times 10^{-6} length/length/°C$
13.5×10^{-6} length/length/°C
13.9 x 10 ⁻⁶ length/length/°C
14.2 x 10 ⁻⁶ length/length/°C
14.4×10^{-6} length/length/°C
58 microohm·cm
788°C

Magnetic properties

SATURATION FLUX DENSITY (Bs)
COERCIVITY
MAXIMUM PERMEABILITY
RESIDUAL INDUCTION
TREATMENT FOR FINAL CLOSED PACK ANNEAL


20000 G	
0.600 Oe	
4000	
4000 G	
1550°F	

20 kG		
4 kG		
843°C		


Direct current (DC) hysteresis

ANNEALED AT 1550°F (843°C)/2 HR/AGED AT 301°F (150°C)/100 HR

Normal direct current (D)C magnetization curves

ANNEALED AT VARIOUS TEMPERATURES

Typical mechanical properties

3/8 IN (9.53 MM) DIAMETER BAR									
HEAT TREATMENT	0.2% YIELD Strength		ULTIMAT STRENG	E TENSILE TH	ELONGATION IN 4D	HARDNESS			
IREAIMENI	ksi	MPa	ksi	MPa	%	ROCKWELL B			
Mill unannealed	80	552	95	655	Not reported	100			
Annealed for magnetic properties ¹	75	517	95	655	30	95			

1 1550°F (843°C), 4 hrs

Heat treatment

Uniform piece part magnetic characteristics

To achieve uniform piece part magnetic characteristics, the finished machined parts should be given a heat treatment.

Heat treatment

Heat treating temperature should be $1385^{\circ}F$ ($750^{\circ}C$) or higher. As the temperature increases to $1950^{\circ}F$ ($1066^{\circ}C$), the maximum permeability increases and HC decreases for a given heat treatment condition (time and atmosphere).

Time at temperature

Time at temperature should be 1 to 8 hours depending upon magnetic piece part performance desired. A nonoxidizing, noncarburizing atmosphere must be employed. Atmospheres such as nitrogen-hydrogen, vacuum, dry or wet hydrogen should be employed. A wet hydrogen atmosphere can be used up to 1750°F (955°C) to achieve very soft magnetic properties. Above 1750°F (955°C), a dry hydrogen atmosphere must be employed.

Typical feeds and speeds

TURNING — SINGLE-POINT AND BOX TOOLS									
DEDTU	HIGH-SPEED	TOOLS		CARBIDE TOO	CARBIDE TOOLS				
DEPTH OF CUT. IN	SPEED, FEED,		TOOL	SPEED, FPM	SPEED, FPM		TOOL		
01 001, IN	FPM	IPR	MATERIAL	BRAZED	THROW AWAY	IPR	MATERIAL		
.150	75	.015	M-2	300	375	.020	C-6		
.025	105	.007	M-3	385	475	.007	C-7		

TURNING — CUT-OFF AND FORM TOOLS									
	FEED, IPR	TOOL							
SPEED, FPM	CUT-OFF TOOL WIDTH, IN			FORM TOO	FORM TOOL WIDTH, IN				
	1/16	1/8	1/4	1/2	1	1-1/2	2	MATERIAL	
65	.001	.0015	.002	.0015	.001	.001	.0007	M-42	
225	.0035	.0045	.006	.003	.0025	.0025	.0015	C-6	

DRILLING									
	FEED, IPI	₹							
SPEED, FPM	NOMINAL HOLE DIAMETER, IN							TOOL MATERIAL	
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	MAILMAL
50	.001	.002	.004	.007	.011	.013	.015	.017	M-42

TAPPING						
SPEED, FPM	TOOL MATERIAL					
10-15	M-1, M-7, M-10					

DIE THREADING									
SPEED, FPM				TOOL MATERIAL					
7 OR LESS	8 TO 15	16 TO 24	25 AND UP, TPI	TOOL MATERIAL					
8–20	10-25	15–30	20-35	M-1, M-2, M-7, M-10					

MILLING — END PERIPHERAL													
DEPTH OF CUT, IN.	HIGH-SPE	HIGH-SPEED TOOLS						CARBIDE TOOLS					
		FEED, IN PER TOOTH CUTTER DIAMETER, IN			TOOL MATERIAL	SPEED, FPM	FEED, IN PER TOOTH				TOOL MATERIAL		
	SPEED, FPM						CUTTER DIAMETER, IN						
	111	1/4	1/2	3/4	1-2	PIGI ENIAE		1/4	1/2	3/4	1-2	MATERIAL	
.050	50	.002	.003	.005	.006	M-42	300	.003	.004	.006	.007	C-6	

Additional machinability notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Other information

Applicable specifications

ASTM A867 Alloy 3

For additional information, please contact your nearest sales office:

electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.