

DATASHEET

EVANOHM® R

Type analysis

Single figures are nominal except where noted

Copper 2.00 % Manganese 1.00 % Silicon 1.00 %	Nickel	73.50 %	Chromium	20.00 %	Aluminum	2.50 %
	Copper	2.00 %	Manganese	1.00 %	Silicon	1.00 %

Forms manufactured

Wire	Ribbon
------	--------

Strip

Description

EVANOHM R is principally a resistance alloy possessing a standard temperature coefficient of ±10 parts per million per °C and a very low thermal EMF versus copper in heavy sizes. It also displays high tensile strength in fine sizes, high corrosion resistance and is nonmagnetic.

EVANOHM R is exceptionally stable (1 to 15 microhms per year). While many other alloys are susceptible to precipitation hardening which changes electrical properties unpredictably, the resistivity of EVANOHM R always increases during heat treatment. Once obtained, its resistivity does not change significantly even when it is used at temperatures as high as 204°C (400 °F).

Key Properties:

- High Electrical Resistivity
- Very Low Temperature Coefficient of Resistivity (TCR)
- High thermal stability
- Tunable TCR with tempering

Applications:

- Power metal strip resistors
- Round wire resistors
- Power metal current sensors

>EVANOHM R

Corrosion resistance

IMPORTANT NOTE:

The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Good
Phosphoric Acid	Good	Acetic Acid	Good
Sodium Hydroxide	Good	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Humidity	Excellent

Physical properties

PROPERTY	At or From	English Units	Metric Units
SPECIFIC GRAVITY	—	8.10	8.10
DENSITY	—	0.2930 lb/in ³	8110 kg/m³
MEAN COEFFICIENT OF THERMAL EXPANSION	68 to 1212°F (20 to 100°C)	7.22 x 10⁻⁰ length/length/°F	12.996×10^{-6} length/length/°C
ELECTRICAL RESISTIVITY	70°F (21°C)	800 ohm-cir-mil/ft	133 microohm∙cm
MELTING RANGE	—	2460°F	1349°C
THERMAL EMF VS. COPPER	32 to 212°F (0 to 100°C)	5.6 x 10 ⁻⁴ mV/°F	1.0 x 10 ⁻³ mV/°C
TEMPERATURE COEFFICIENT OF RESISTIVITY (TCR)	-65°C to 125°C	—	±10 ppm/°C

Magnetic properties

MAGNETIC ATTRACTION

None

Typical mechanical properties

TENSILE STRENGTH			
ANNEALED		COLD WORKED	
ksi	MPa	ksi	MPa
100	689	200	1379

>EVANOHM R

Heat treatment

Heat treatment is generally performed by heating to a temperature below 400-600°C (752-1112°F).

Other information

Applicable specifications

ASTM B267 Class 1A & 1B & 1C

.12 .08 % Change in Resistance .04 0 -.04 -.08 -.12 -.16 -.20 -60 -40 -20 20 40 60 100 0 80 Temperature (°C)

RESISTANCE CHANGE VS. TEMPERATURE

>EVANOHM R

RESISTANCE AND WEIGHT OF ROUND WIRE

RESISTIVIT	Y EQUALS 800 OHMS PER	CIRCULAR MIL FT AT 20)°C (68°F)		
B&S	DIAMETER IN INCHES	OHMS PER FT AT 20°C (68°F)	OHMS PER LB BARE WIRE	FT PER LB BARE WIRE	LBS PER M FT
15	.057	0.2462	27.48	111.6	8.961
16	.051	0.3076	42.85	139.3	7.179
17	.045	0.3951	70.56	178.6	5.599
18	.040	0.5000	113.0	226	4.425
19	.036	0.6173	172.7	279.8	3.574
20	.032	0.7813	276.7	354.1	2.824
21	.0285	0.9849	439.7	446.4	2.24
22	.0253	1.250	707.9	566.3	1.766
23	.0226	1.566	1,112.0	709.8	1.409
24	.0201	1.980	1,777.0	897.4	1.114
25	.0179	2.497	2,827.0	1,132.0	.8834
26	.0159	3.164	4,537.0	1,434.0	.6974
27	.0142	3.967	7,133.0	1,798.0	.5562
28	.0126	5.039	11,509.0	2,284.0	.4378
29	.0113	6.265	17,786.0	2,839.0	.3522
30	.01	8.000	29,008.0	3,626.0	.2758
31	.0089	10.10	46,228.0	4,577.0	.2185
32	.008	12.50	70,813.0	5,665.0	.1765
33	.0071	15.87	114,137.0	7,192.0	.139
34	.0063	20.16	184,162.0	9,135.0	.1095
35	.0056	25.51	294,921.0	11,561.0	.0865
36	.005	32.00	464,064.0	14,502.0	.06896
37	.0045	39.51	707,387.0	17,904.0	.05585
38	.004	50.00	1,133,000.0	22,660.0	.04413
39	.0035	65.31	1,932,980.0	29,597.0	.03379
40	.0031	83.25	3,140,778.0	37,727.0	.02651
	.00275	105.8	5,072,264.0	47,942.0	.02086
	.0025	128.0	7,425,280.0	58,010.0	.01724
	.00225	158.0	11,315,486.0	71,617.0	.01376
	.002	200.0	18,128,000.0	90,640.0	.01103
	.00175	261.3	30,934,523.0	1,183,887.0	.008466

RESISTANCE OF RIBBON (FLAT WIRE)

RESIST	ANCE OF RIBBOI	N IN 628 OHMS	PER SQUAR	E MIL FT AT	20°C (68°F)				
THICKN	ESS	WIDTH IN I	NCHES						
B&S	INCHES	1/64 .0156	1/32 .0312	3/64 .0468	1/16 .0625	3/32 .0937	1/8 .125	3/16 .1875	
11	.091								
12	.081								
13	.072								
14	.064							.0556	
15	.057							.0625	
16	.051							.0698	
17	.045							.0791	
18	.040						.1336	.0890	
19	.036						.1485	.0989	
20	.032						.1669	.1113	
21	.0285						.1875	.1249	
22	.0253						.2112	.1408	
23	.0226						.2365	.1482	
24	.0201			.7088	.5317	.3544	.2658	.1666	
25	.0179			.7960	.5970	.3980	.2985	.1871	
26	.0159			.8962	.6721	.4481	.3361	.2106	
27	.0142			1.003	.7525	.5018	.3763	.2357	
28	.0126			1.131	.8482	.5654	.4241	.2658	
29	.0113			1.261	.9457	.6304	.4728	.2963	
30	.010	4.274	2.137	1.424	1.069	.7124	.5343	.3348	
31	.0089	4.803	2.402	1.602	1.201	.8005	.6004	.3762	
32	.008	5.343	2.671	1.781	1.336	.8905	.7564		
33	.0071	6.021	3.010	2.007	1.506	1.003	.8522		
34	.0063	6.785	3.393	2.261	1.696	1.131	.9605		
35	.0056	7.633	3.816	2.544	1.908	1.442	1.081		
36	.005	8.549	4.274	2.850	2.137	1,614	1.210		
37	.0045	9.498	4.749	3.166	2.375	1.794	1.345		
38	.004	10.686	5.343	3.563	3.026	2.018	1.513		
39	.0035	12.213	6.107	4.071	3.458	2.306	1.730		
40	.0031	13.787	6.895	5.206	3.904	2.602			
	.00275	15.548	7.771	5.868	4.402				
	.0025	17.099	8.549	6.454					
	.00225	18.994	9.498	7.172					
	.002	21.370	12.102	8.056					
	.00175	24.423	13.836						

*Historically, sizes to the right of the red line are considered square edge. Those to the left are considered round edge, and resistances of these sizes are calculated according to the method advocated by the American Society for Testing Materials. That is, if the width to thickness ratio of a round edge strip is less than 15 to 1, the cross-sectional area shall be considered 6% less than a true rectangle when calculating the resistance. This is true of all sizes above the black line.

For all sizes below the black line, the width to thickness ratio is greater than 15 to 1, and the cross-sectional area shall be considered 17% less than a true rectangle.

For additional information, please contact your nearest sales office: electrification@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.